Voltage‑gated K+ channel blocker quinidine inhibits proliferation and induces apoptosis by regulating expression of microRNAs in human glioma U87‑MG cells.
نویسندگان
چکیده
Accumulating evidence has proved that potassium channels (K+ channels) are involved in regulating cell proliferation, cell cycle progression and apoptosis of tumor cells. However, the precise cellular mechanisms are still unknown. In the present study, we investigated the effect and mechanisms of quinidine, a commonly used voltage-gated K+ channel blocker, on cell proliferation and apoptosis of human glioma U87-MG cells. We found that quinidine significantly inhibited the proliferation of U87-MG cells and induced apoptosis in a dose-dependent manner. The results of caspase colorimetric assay showed that the mitochondrial pathway was the main mode involved in the quinidine-induced apoptotic process. Furthermore, the concentration range of quinidine, which inhibited voltage-gated K+ channel currents in electrophysiological assay, was consistent with that of quinidine inhibiting cell proliferation and inducing cell apoptosis. In U87-MG cells treated with quinidine (100 µmol/l), 11 of 2,042 human microRNAs (miRNAs) were upregulated and 16 were downregulated as detected with the miRNA array analysis. The upregulation of miR-149-3p and downregulation of miR-424-5p by quinidine treatment were further verified by using quantitative real-time PCR. In addition, using miRNA target prediction program, putative target genes related to cell proliferation and apoptosis for two differentially expressed miRNAs were predicted. Taken together, these data suggested that the anti-proliferative and pro-apoptosis effect of voltage-gated K+ channel blocker quinidine in human glioma cells was mediated at least partly through regulating expression of miRNAs, and provided further support for the mechanisms of voltage-gated K+ channels in mediating cell proliferation and apoptosis.
منابع مشابه
Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma.
Increasing evidence indicates that potassium (K+) channels play important roles in the growth and development of human cancer. In the present study, we investigated the contribution of and the mechanism by which K+ channels control the proliferation and tumor development of U87-MG human glioma cells. A variety of K+ channel blockers and openers were used to differentiate the critical subtype of...
متن کاملGenistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of oncology
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2015